Constitutive properties of adult mammalian cardiac muscle cells.
نویسندگان
چکیده
BACKGROUND The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.
منابع مشابه
Rabbit cardiac and skeletal myocytes differ in constitutive and inducible expression of the glucose-regulated protein GRP94.
The glucose-regulated protein GRP94 is a stress-inducible glycoprotein that is known to be constitutively and ubiquitously expressed in the endoplasmic reticulum of mammalian cells. From a rabbit heart cDNA library we isolated four overlapping clones coding for the rabbit homologue of GRP94 mRNA. Northern blot analysis shows that a 3200 nt mRNA species corresponding to GRP94 mRNA is detectable ...
متن کاملStemming heart failure with cardiac- or reprogrammed-stem cells
Despite extensive efforts to control myocyte growth by genetic targeting of the cell cycle machinery and small molecules for cardiac repair, adult myocytes themselves appeared to divide a limited number of times in response to a variety of cardiac muscle stresses. Rare tissue-resident stem cells are thought to exist in many adult organs that are capable of self-renewal and differentiation and p...
متن کاملThymosin beta4 induces epicardium-derived neovascularization in the adult heart.
The inability of the human heart to effectively repair itself after acute ischaemic injury has driven the search for efficacious means of promoting cardiac regenerative growth. Central to this has been the emergence of cell-based strategies to stimulate and augment both myocardial regeneration and neovascularization. Autologous cell transplantation of a variety of adult progenitor cells has bee...
متن کاملNew perspectives on regeneration of the heart.
De novo cardiomyocytes from within the activated adult heart after injury Smart et al Nature. 2011. doi:10.1038/nature10188 Can the adult mammalian heart regenerate and replace lost or damaged tissue? Text books suggest it cannot but recent studies suggest we may have to revisit this issue. Until recently, regeneration of the heart was thought to be restricted to fish and amphibians. For instan...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 98 6 شماره
صفحات -
تاریخ انتشار 1998